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Module-5: Tietze Extension

Theorem

Let X be the closed unit interval and A = (0, 1). If we consider the function by

f(x) = 1
x

defined on (0, 1), then f cannot be extended to the closed interval [0, 1]. In fact

any continuous function defined on [0, 1] must be bounded. Tietze extension theorem is

one of the immediate consequence of the Urysohn lemma which deals with the problem

of extending a continuous real-valued function that is defined on a subspace of a space

X to a continuous function defined on all of X. This theorem is important in many of

the applications of topology.

Theorem 1. Let X be a normal space; let C be a closed subspace of X. Any continuous

map of C into R may be extended to a continuous map of all of X into R.

Proof. The idea of the proof is approximation. We shall construct a sequence of continu-

ous functions defined on the entire space X, such that the sequence converges uniformly,

and such that the restriction of each function to C approximates f . Then the limit

function will be continuous, and its restriction to C will equal f .

Let X be a normal space, C a closed subset, and f : C → R a continuous map. Let

us first consider the bounded case, i.e. say |f(x)| ≤M for all x ∈ C.

Let A1 = {x ∈ C : f(x) ≥ M
3
} and B1 = {x ∈ C : f(x) ≥ −M

3
}. Then A1 and B1

are obviously disjoint, and they are both closed subsets of C. But C is closed in X, and

therefore A1 and B1 must be closed in X. By Urysohn’s lemma we can find a continuous

map g1 : X → [−M
3
, M

3
] which takes the value M

3
on A1 and −M

3
on B1 and which takes

values in (−M
3
, M

3
) on X − (A1 ∪B1). Notice that |f(x)− g1(x)| ≤ 2M

3
on C.

Now consider the function f − g1 and let A2 consist of those points of C for which

|f(x)−g1(x)| ≥ 2M
9

, and B2 those points for which |f(x)−g1(x)| ≤ −2M
9

. Again applying
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Uryshon’s lemma a second time we can find a map g2 : X → [−2M
9
, 2M

9
] which takes the

value 2M
9

on A2 and −2M
9

on B2, and values in (−2M
9
, 2M

9
) on the remaining points of X.

If we compute f(x)− g1(x)− g2(x), we see that |f(x)− g1(x)− g2(x)| ≤ 4M
9

on C.

By repeating this process we can construct a sequence of maps gn : X → [−2n−1M
3n

, 2
n−1M
9

]

which satisfy:

(a) |f(x)− g1(x)− g2(x)− . . . gn(x)| ≤ 2nM
3n

on C; and

(b) |gn(x)| < 2n−1M
3n

on X − C.

We now define

g(x) =
∞∑
n=1

gn(x)

for all x in X. The convergency of the infinite series follows from the comparison

theorem of calculus, it converges by comparison with the geometric series

1

3

∞∑
n=1

(
2

3

)n−1

.

To show that g is continuous, we must show that the sequence sn of partial sums converges

to g uniformly. This fact follows at once from the “Weierstrass M-test”.

Finally we show that g(x) = f(x) for x ∈ C. g(x) is by definition the limit of the

infinite sequence sn(x) of partial sums. Since

|f(x)−
n∑

i=1

gi(x)| = |f(x)− sn(x)| ≤
(

2

3

)n

for all x in C, it follows that sn(x)→ f(x) for all x ∈ C. Therefore, f and g agree on C.

If |g(x)| is bounded then |g(x)| =
∑∞

n=1 |gn(x)| ≤
∑∞

n=1M
2n−1

3n
= M , and |g(x)| is

strictly less than M on X − C by (b).

Let f : C → R be arbitrary continuous function. Let us choose a homeomorphism h from

the real line to the interval (−1, 1) and consider the composition h◦f , which is bounded.

Therefore by the above argument we can extend it to a continuous real-valued function

g on X, all of whose values lie strictly between -1 and 1. So the composition h−1 ◦ g is

well defined, and by construction it extends f over X. This completes the proof.
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The following corollary can be obtained easily.

Corollary 1. Let X be a normal space; let C be a closed subspace of X. Then Any

continuous map of C into the closed interval [a, b] may be extended to a continuous map

of all of X into [a, b].

Proof. Proof follows from the proof of main Theorem.

Though we have used Urysohn Lemma in the proof Tietz extension Theorem, but if

a space satisfies Tietz extension Theorem, then it satisfies Urysohn Lemma.

Proposition 1. Show that the Tietze extension theorem implies the Urysohn lemma.

Proof. We need to use pasting lemma and then to apply Tietze extension theorem.

Definition 1. A space Y is said to have the universal extension property if for any given

normal space X, any closed subset A of X, and any continuous function f : A → Y ,

there exists an extension of f to a continuous map of X into Y .

Proposition 2. Prove that RJ has the universal extension property.

Proof. Consider a normal space X, a closed subset A of X, and a continuous function

f : A → Y . The for each i ∈ J , fi = πi ◦ f : A → R is continuous and hence has a

continuous extension say gi over X. Then g = (gi)i ∈ RJ is a continuous extension of f

over X.

Definition 2. Let X be a topological space. If Y is a subspace of Z, we say that Y is a

retract of X if there is a continuous map r : X → Y such that r(y) = y for each y ∈ Y .

It is easy to observe that if X is Hausdorff then any retract Y of X is closed.

Example 1. S1 is a retract of R2−{0}. The map r : R2−{0} → S1 defined by r(x) = x
‖x‖

is a retraction.

Example 2. If Y is homeomorphic to a retract of RJ , then Y has the universal extension

property.

Definition 3. Let X be a normal space. Then X is said to be an absolute retract if for

any normal space Y and any closed subspace Y0 of Y , homeomorphic to X, the space Y0

is a retract of Y .
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Proposition 3. If X has the universal extension property, then X is an absolute retract.

Proof. Let Y be a normal space, Y0 be a closed subspace of Y homeomorphic to X. Let

f : Y0 → X be the homeomorphism. Since X has the universal extension property there

exists a continuous extension say g : Y → X of f : Y0 → X. Then r = f−1 ◦ g is the

required retraction.
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