CHAPTER 3

Separation axioms

 $\mathbf{B}\mathbf{Y}$

Dr. Dibyendu De

Associate Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : dibyendude@gmail.com

Module-5: Tietze Extension Theorem

Let X be the closed unit interval and A = (0, 1). If we consider the function by $f(x) = \frac{1}{x}$ defined on (0, 1), then f cannot be extended to the closed interval [0, 1]. In fact any continuous function defined on [0, 1] must be bounded. Tietze extension theorem is one of the immediate consequence of the Urysohn lemma which deals with the problem of extending a continuous real-valued function that is defined on a subspace of a space X to a continuous function defined on all of X. This theorem is important in many of the applications of topology.

Theorem 1. Let X be a normal space; let C be a closed subspace of X. Any continuous map of C into \mathbb{R} may be extended to a continuous map of all of X into \mathbb{R} .

Proof. The idea of the proof is approximation. We shall construct a sequence of continuous functions defined on the entire space X, such that the sequence converges uniformly, and such that the restriction of each function to C approximates f. Then the limit function will be continuous, and its restriction to C will equal f.

Let X be a normal space, C a closed subset, and $f: C \to \mathbb{R}$ a continuous map. Let us first consider the bounded case, i.e. say $|f(x)| \leq M$ for all $x \in C$.

Let $A_1 = \{x \in C : f(x) \ge \frac{M}{3}\}$ and $B_1 = \{x \in C : f(x) \ge -\frac{M}{3}\}$. Then A_1 and B_1 are obviously disjoint, and they are both closed subsets of C. But C is closed in X, and therefore A_1 and B_1 must be closed in X. By Urysohn's lemma we can find a continuous map $g_1 : X \to [-\frac{M}{3}, \frac{M}{3}]$ which takes the value $\frac{M}{3}$ on A_1 and $-\frac{M}{3}$ on B_1 and which takes values in $(-\frac{M}{3}, \frac{M}{3})$ on $X - (A_1 \cup B_1)$. Notice that $|f(x) - g_1(x)| \le \frac{2M}{3}$ on C.

Now consider the function $f - g_1$ and let A_2 consist of those points of C for which $|f(x) - g_1(x)| \ge \frac{2M}{9}$, and B_2 those points for which $|f(x) - g_1(x)| \le -\frac{2M}{9}$. Again applying

Uryshon's lemma a second time we can find a map $g_2 : X \to \left[-\frac{2M}{9}, \frac{2M}{9}\right]$ which takes the value $\frac{2M}{9}$ on A_2 and $-\frac{2M}{9}$ on B_2 , and values in $\left(-\frac{2M}{9}, \frac{2M}{9}\right)$ on the remaining points of X. If we compute $f(x) - g_1(x) - g_2(x)$, we see that $|f(x) - g_1(x) - g_2(x)| \leq \frac{4M}{9}$ on C.

By repeating this process we can construct a sequence of maps $g_n: X \to \left[-\frac{2^{n-1}M}{3^n}, \frac{2^{n-1}M}{9}\right]$ which satisfy:

(a)
$$|f(x) - g_1(x) - g_2(x) - \dots - g_n(x)| \le \frac{2^n M}{3^n}$$
 on C; and
(b) $|g_n(x)| < \frac{2^{n-1} M}{3^n}$ on $X - C$.

We now define

$$g(x) = \sum_{n=1}^{\infty} g_n(x)$$

for all x in X. The convergency of the infinite series follows from the comparison theorem of calculus, it converges by comparison with the geometric series

To show that g is continuous, we must show that the sequence s_n of partial sums converges to g uniformly. This fact follows at once from the "Weierstrass M-test".

Finally we show that g(x) = f(x) for $x \in C$. g(x) is by definition the limit of the infinite sequence $s_n(x)$ of partial sums. Since

$$|f(x) - \sum_{i=1}^{n} g_i(x)| = |f(x) - s_n(x)| \le \left(\frac{2}{3}\right)^n$$

for all x in C, it follows that $s_n(x) \to f(x)$ for all $x \in C$. Therefore, f and g agree on C.

If |g(x)| is bounded then $|g(x)| = \sum_{n=1}^{\infty} |g_n(x)| \le \sum_{n=1}^{\infty} M \frac{2^{n-1}}{3^n} = M$, and |g(x)| is strictly less than M on X - C by (b).

Let $f: C \to \mathbb{R}$ be arbitrary continuous function. Let us choose a homeomorphism h from the real line to the interval (-1, 1) and consider the composition $h \circ f$, which is bounded. Therefore by the above argument we can extend it to a continuous real-valued function g on X, all of whose values lie strictly between -1 and 1. So the composition $h^{-1} \circ g$ is well defined, and by construction it extends f over X. This completes the proof. \Box The following corollary can be obtained easily.

Corollary 1. Let X be a normal space; let C be a closed subspace of X. Then Any continuous map of C into the closed interval [a, b] may be extended to a continuous map of all of X into [a, b].

Proof. Proof follows from the proof of main Theorem.

Though we have used Urysohn Lemma in the proof Tietz extension Theorem, but if a space satisfies Tietz extension Theorem, then it satisfies Urysohn Lemma.

Proposition 1. Show that the Tietze extension theorem implies the Urysohn lemma.

Proof. We need to use pasting lemma and then to apply Tietze extension theorem. \Box

Definition 1. A space Y is said to have the universal extension property if for any given normal space X, any closed subset A of X, and any continuous function $f : A \to Y$, there exists an extension of f to a continuous map of X into Y.

Proposition 2. Prove that \mathbb{R}^J has the universal extension property.

Proof. Consider a normal space X, a closed subset A of X, and a continuous function $f : A \to Y$. The for each $i \in J$, $f_i = \pi_i \circ f : A \to \mathbb{R}$ is continuous and hence has a continuous extension say g_i over X. Then $g = (g_i)_i \in \mathbb{R}^J$ is a continuous extension of f over X.

Definition 2. Let X be a topological space. If Y is a subspace of Z, we say that Y is a retract of X if there is a continuous map $r: X \to Y$ such that r(y) = y for each $y \in Y$.

It is easy to observe that if X is Hausdorff then any retract Y of X is closed.

Example 1. \mathbb{S}^1 is a retract of $\mathbb{R}^2 - \{\overline{0}\}$. The map $r : \mathbb{R}^2 - \{\overline{0}\} \to \mathbb{S}^1$ defined by $r(x) = \frac{x}{\|x\|}$ is a retraction.

Example 2. If Y is homeomorphic to a retract of \mathbb{R}^J , then Y has the universal extension property.

Definition 3. Let X be a normal space. Then X is said to be an absolute retract if for any normal space Y and any closed subspace Y_0 of Y, homeomorphic to X, the space Y_0 is a retract of Y.

Proposition 3. If X has the universal extension property, then X is an absolute retract.

Proof. Let Y be a normal space, Y_0 be a closed subspace of Y homeomorphic to X. Let $f: Y_0 \to X$ be the homeomorphism. Since X has the universal extension property there exists a continuous extension say $g: Y \to X$ of $f: Y_0 \to X$. Then $r = f^{-1} \circ g$ is the required retraction.

